
Download free eBooks at bookboon.com

Go Faster!

61

Part II: The Transrelational Model

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

62

Core Concepts

4 Core Concepts

4.1 Introduction

Now (at last) I can begin to explain the TR model in detail. As I mentioned several times in Part I, TR is indeed still a

model, and thus, like the relational model, still somewhat abstract. At the same time, however, it’s at a much lower level

of abstraction than the relational model; it can be thought of as being closer to the physical implementation level (“closer

to the metal”), and accordingly more oriented toward issues of performance. In particular, it relies heavily on the use of

pointers—a concept deliberately excluded from the relational model, of course, for reasons discussed in references [9],

[30], [40], and many other places—and its operators are much more procedural in nature than those of the relational

model. (What I mean by this latter remark is that code that makes use of those operators is much more procedural than

relational code is, or is supposed to be.) What’s more, reference [63] includes detailed, albeit still somewhat abstract,

algorithms for implementing those operators. Note: hese remarks aren’t meant to be taken as criticisms, of course; I’m

just trying to capture the essence of the TR model by highlighting some of its key features.

Despite its comparatively low-level nature, the fact remains that, to say it again, TR is indeed a model, and thus capable

of many diferent physical realizations. In what follows, I’ll talk for much of the time in terms of just one possible

realization—it’s easier on the reader to be concrete and deinite—but I’ll also mention some alternative implementation

schemes on occasion. Note that the alternatives in question have to do with the implementation of both data structures

and corresponding access algorithms. In particular, bear in mind that both main-memory and secondary-storage

implementations are possible.

Now, this book is meant to be a tutorial; accordingly, I want to focus on showing the TR model in action (as it were)—that

is, showing how it works in terms of concrete examples—rather than on describing the abstract model as such. Also, many

TR features are optional, in the sense that they might or might not be present in any given implementation or application

of the model, and it’s certainly not worth getting into all of those optional features in a book of this kind. Nor for the most

part is it worth getting into the optionality or otherwise of those features that are discussed—though I should perhaps at

least point out that options do imply a need for decisions: Given some particular option X, some agency, at some time, has

to decide whether or not X should be exercised. For obvious reasons, I don’t want to get into a lot of detail on this issue

here, either. Suice it to say that I don’t think many of those decisions, if any at all, should have to be made at database

design time (by some human being) or at run time (by the system itself); in fact, I would expect most of them to be made

during the process of designing the DBMS that is the speciic TR implementation in question. In other words, I don’t

think the fact that those decisions do have to be made implies that a TR implementation will therefore sufer from the

same kinds of problems that arise in connection with direct-image systems, as discussed in Chapter 2.

It follows from all of the above that this book is meant as an introduction only; many topics are omitted and others are

simpliied, and I make no claims of completeness of any kind.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

63

Core Concepts

Now let’s get down to business. In this chapter and the next,1 we’ll be looking at what are clearly the most basic TR constructs

of all: namely, the Field Values Table and the Record Reconstruction Table, both of which were mentioned briely in the

inal section of the previous chapter. hese two constructs are absolutely fundamental—everything else builds on them,

and I recommend as strongly as I can that you familiarize yourself with their names and basic purpose before you read

much further. Just to remind you:

•	 he Field Values Table contains the ield values from a given ile, rearranged in a way to be explained in

Section 4.3.

•	 he Record Reconstruction Table contains information that allows records of the given ile to be

reconstructed from the Field Values Table, in a way to be explained in Section 4.4.

In subsequent chapters I’ll consider various possible reinements of those core concepts. Note: hose reinements might be

regarded in some respects as “optional extras” or “frills,” but some of them are very important—so much so, that they’ll

almost certainly be included in any concrete realization of the TR model, as we’ll see.

4.2 The Crucial Idea

Let r be some given record within some given ile at the ile level. hen the crucial insight underlying the TR model can

be characterized as follows:

he stored form of r involves two logically distinct pieces, a set of ield values and a set of “linkage”

information that ties those ield values together, and there’s a wide range of possibilities for physically

storing each piece.

In direct-image systems, the two pieces (the ield values and the linkage information) are kept together, of course; in other

words, the linkage information in such systems is represented by physical contiguity. In TR, by contrast, the two pieces

are kept separate; to be speciic, the ield values are kept in the Field Values Table, and the linkage information is kept in

the Record Reconstruction Table. hat separation makes TR strikingly diferent from virtually all previous approaches to

implementing the relational model (see Chapters 1 and 2), and is the fundamental source of the numerous beneits that

TR technology is capable of providing. In particular, it means that TR data representations are categorically not a direct

image of what the user sees at the relational level.

Note: One immediate advantage of the separation is that the Field Values Table and the Record Reconstruction Table can

both be physically stored in a way that is highly eicient in terms of storage space and access time requirements. However,

we’ll see many additional advantages as well, both in this chapter and in subsequent ones.

4.3 The Field Values Table

Consider the ile shown in Fig. 4.1. he igure is basically a repeat of Fig. 3.2, except that for the sake of the example I’ve

rearranged the records into a diferent top-to-bottom sequence (ater all, we know from Chapter 3 that record sequence at

the ile level is efectively arbitrary anyway; in fact, the same is true of let-to-right ield sequence as well, but for simplicity

I’ve kept that unchanged). Fig. 4.2, a repeat of Fig. 3.4, shows the corresponding Field Values Table.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

64

Core Concepts

Fig. 4.1: A ile corresponding to the suppliers relation of Fig. 2.1

Fig. 4.2: Field Values Table corresponding to the ile of Fig. 4.1

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Go Faster!

65

Core Concepts

Note: Together with Fig. 2.1, which shows the original suppliers relation, Figs. 4.1 and 4.2 form the basis for a running

example that I’ll be using throughout this chapter (and indeed throughout the next two chapters as well). You might want

to keep a copy of those igures by you for ease of subsequent reference.

Now, you’ve probably igured out for yourself how the Field Values Table is obtained from the corresponding ile: Basically,

each column of the table contains the values from the corresponding ield of the ile, rearranged into ascending sort

order. Note immediately, therefore, that no matter what order the records of the ile appear in initially, we wind up with

the same Field Values Table; that’s why Figs. 4.2 and 3.4 are identical, even though Figs. 4.1 and 3.2 are not. In other words,

record ordering is irrelevant so far as the Field Values Table is concerned. (By contrast, ield ordering is not irrelevant;

that is, the let-to-right column ordering of the Field Values Table is the same as the let-to-right ield ordering in the

corresponding ile. However, this point isn’t very important so far as the user is concerned.)

Incidentally, it should be immediately clear from the example that one way to think about TR is that it’s a technology

that stores the data “attribute-wise” rather than “tuple-wise”—though I hasten to add that this informal characterization

doesn’t even begin to capture all of the implications and advantages of the TR approach. Now, although by contrast most

mainstream SQL products store the data “tuple-wise” (as we saw in Chapter 2), there have been a few systems, both

prototypes and commercial products, that have stored the data “attribute-wise” instead (see, for example, references [2],

[49], [52], [65], and [66]); indeed, some of those products are still available in the marketplace at the time of writing. But

none of those systems carried (or carry) the “attribute-wise” idea to anything like the same lengths that TR does. Note:

By the same token, some of those systems used or use various kinds of data compression on the attributes, too, but again

not nearly to the same extent that TR does (see Chapters 8 and 9).

It should also be clear from the example that TR takes the concept of data independence much further than previous

systems have done. To be speciic, there’s essentially no concept of a user-level tuple at all at the TR level, whereas (again

as we saw in Chapter 2) conventional systems typically do store direct images of user-level tuples, albeit in a variety of

diferent ways. (Even those systems that store data “attribute-wise” still retain fairly close ties between the user level and

the physical storage level—for example, by ensuring that the attribute values from a given user-level tuple all appear at

the same relative position within the individual attribute representations.)

Anyway, let’s get back to the Field Values Table. I’m clearly not in a position yet to describe exactly how that table is

used, nor to explain its advantages (I need to discuss the Record Reconstruction Table irst); nevertheless, I’d still like to

mention a few points that I think should at least make some intuitive sense, even before we start to look at the Record

Reconstruction Table as such.

•	 First of all, the fact that each column of the Field Values Table is in sorted order is clearly going to help with

user-level ORDER BY requests. For example, a request to see suppliers in city name sequence shouldn’t

require a run-time sort, nor an index.

•	 he same is true of a request to see suppliers in reverse city name sequence (meaning descending sort order,

instead of ascending)—the implementation can simply process the Field Values Table bottom to top instead

of top to bottom.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

66

Core Concepts

•	 Analogous remarks apply to every single attribute; that is, the Field Values Table efectively represents several

diferent sort orders simultaneously (in efect, a sort order in both directions on every individual attribute).

•	 Requests involving speciic value lookups—for example, a request to see suppliers in London—can be

implemented by means of a binary search. And, again, analogous remarks apply to every attribute. Note:

Binary search is also known as logarithmic search, on account of the fact that it’s an O(log N) algorithm,

where N is the number of items in the list to be searched and O(log N) means the execution time is

proportional to log N (O here stands for “order of magnitude”). Sequential search, by contrast, is an O(N)

algorithm. For example, if N = 1,000,000, then we might say, loosely, that binary search is some 50,000 times

more eicient than sequential search.

hese points will all be expanded and made clearer in Sections 4.4, 4.5, and 4.6 below. For now, here are a couple of inal

remarks to close out this section:

•	 In some respects, the Field Values Table can be thought of as a kind of bridge between the user perception

of the data (meaning the original user-level relation and/or the corresponding ile) and other internal TR

structures. Note in particular that the Field Values Table is the only TR table that contains user data as

such—all of the others contain internal information, encoded in ways that make sense to TR but aren’t

directly relevant to, or exposed to, the user at all.

•	 As I explained in Chapter 2, at the end of Section 2.2, there’s only one physical sequence available to us

at the hardware level, so we want to make the best use of it we can. In the TR approach, we store the Field

Values Table in physical sequence by row number. (It should be clear from what I said a few paragraphs

back—regarding, for example, ORDER BY requests—that we oten need to process the Field Values Table

sequentially by row number, so storing it as just indicated is clearly advantageous.) Of course, storing the

Field Values Table in physical sequence in this manner doesn’t preclude us from exploiting physical sequence

appropriately for other internal structures as well, but it’s vitally important that we do so in the case of the

Field Values Table in particular.

4.4 The Record Reconstruction Table

Fig. 4.3 shows the Field Values Table from Fig. 4.2 side by side with an appropriate Record Reconstruction Table. Note

that the two tables both have the same number of rows and columns; indeed, there’s a direct one-to-one correspondence

between the cells of the two tables, as we’ll see in a moment. (In fact, each table has the same number of rows and columns

as the ile in Fig. 4.1 has records and ields, respectively.) Note too that the entries in the Record Reconstruction Table

cells aren’t supplier numbers or supplier names (etc.) any longer; instead, they’re row numbers, and those row numbers

can be thought of as pointers to the rows of either or both of the Field Values Table and the Record Reconstruction Table,

depending on the context in which they’re used. (For this reason, the columns in the Record Reconstruction Table really

ought not to be labeled S#, SNAME, etc., as I’ve shown them in the igure; however, I think those labels help to make

certain later explanations easier to follow.) Note: You might want to keep a copy of the Record Reconstruction Table from

Fig. 4.3 by you as well for purposes of subsequent reference.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

67

Core Concepts

Fig. 4.3: Field Values Table of Fig. 4.2 and a corresponding Record Reconstruction Table

Now, I deliberately don’t want to get into details just yet as to how the Record Reconstruction Table is built in the irst

place; instead, I want to show how it’s used. To that end, please consider the following sequence of operations. (Recall

from Chapter 3 that, in the subscript expression [i,j], i is a row number and j is a column number.)

Step 1: Go to cell [1,1] of the Field Values Table and fetch the value stored there—namely, the supplier number S1.

hat value is the irst ield value (that is, the S# ield value) within a certain supplier record in the suppliers ile.

Step 2: Go to the same cell (that is, cell [1,1]) of the Record Reconstruction Table and fetch the value stored

there—namely, the row number 5. hat row number is interpreted to mean that the next ield value (which is

to say, the second or SNAME value) within the supplier record whose S# ield value is S1 is to be found in the

SNAME position of the ith row of the Field Values Table—in other words, in cell [5,2] of the Field Values

Table. Go to that cell and fetch the value stored there (supplier name Smith).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Go Faster!

68

Core Concepts

Step 3: Go to the corresponding Record Reconstruction Table cell [5,2] and fetch the row number stored there

(3). he next (third or STATUS) ield value within the supplier record we’re reconstructing is in the STATUS

position in the third row of the Field Values Table—in other words, in cell [3,3]. Go to that cell and fetch the

value stored there (status 20).

Step 4: Go to the corresponding Record Reconstruction Table cell [3,3] and fetch the value stored there (which

is 3 again). he next (fourth or CITY) ield value within the supplier record we’re reconstructing is in the CITY

position in the third row of the Field Values Table—in other words, in cell [3,4]. Go to that cell and fetch the

value stored there (city name London).

Step 5: Go to the corresponding Record Reconstruction Table cell [3,4] and fetch the value stored there (1).

Now, the “next” ield value within the supplier record we’re reconstructing looks like it ought to be the ith such

value; however, supplier records have only four ields, so that “ith” wraps around to become the irst. hus, the

“next” (irst or S#) ield value within the supplier record we’re reconstructing is in the S# position in the irst

row of the Field Values Table—in other words, in cell [1,1]. But that’s where we came in, and the process stops.

As I hope you can see, the foregoing sequence of operations allows us to reconstruct one particular record from the

suppliers ile—to be speciic, the one shown as record number 4 in Fig. 4.1:

(I don’t mean to suggest that the record number itself—4, in the example—is produced in the reconstruction process; I’ve

shown it here merely to help you relate the output from that process back to the ile as shown in Fig. 4.1.)

By the way, note how the row-number pointers we followed in the foregoing example form a ring—in fact, two isomorphic

rings, one in the Field Values Table and one in the Record Reconstruction Table. See Fig. 4.4.

Fig. 4.4: Pointer rings (examples)

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

69

Core Concepts

As an exercise—Exercise 12—I strongly recommend you try reconstructing another supplier record for yourself. If you

start with cell [2,1] in the Field Values Table, you should obtain record number 3 from Fig. 4.1:

Similarly, starting with cell [3,1] gives record 5; starting with cell [4,1] gives record 1; and starting with cell [5,1] gives

record 2. Observe the net efect: If we process the entire Field Values Table in supplier number order by going top to

bottom down the S# column—that is, if we carry out the record reconstruction process ive times, starting respectively

with cells [1,1], [2,1], [3,1], [4,1], and [5,1], in that order—then we reconstruct a version of the entire original suppliers

ile in which the records appear in ascending supplier number order. In other words, we’ve just implemented the following

SQL query—

SELECT S.S#, S.SNAME, S.STATUS, S.CITY

FROM S

ORDER BY S# ;

Likewise, to implement this SQL query—

SELECT S.S#, S.SNAME, S.STATUS, S.CITY

FROM S

ORDER BY S# DESC ;

(where DESC means descending sequence)—all we have to do is process the supplier number column of the Field Values

Table in reverse order and do the reconstructions starting from cell [5,1], then [4,1], and so on. What’s more, we haven’t

had to do a run-time sort in either case, nor have we had to use an index.

Ordering by Other Attributes

Now consider this SQL query:

SELECT S.S#, S.SNAME, S.STATUS, S.CITY

FROM S

ORDER BY STATUS ;

Precisely because (as noted earlier) the pointers in the Record Reconstruction Table form rings, we can enter those rings

at any point. When we apply the reconstruction algorithm, therefore, we can start at any cell we like. In particular, if we

start with cell [1,3]—that is, the irst cell in the STATUS column—we obtain the record:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

70

Core Concepts

 (More precisely, we obtain a version of this record in which the let-to-right ield ordering is STATUS, then CITY, then

S#, then SNAME.) Following on down the STATUS column—that is, starting the reconstruction process successively with

cells [2,3], [3,3], [4,3], and [5,3]—we’ll eventually obtain the entire suppliers ile in ascending status order.

In analogous fashion, if we process the Record Reconstruction Table in sequence by entries in the SNAME column, we

obtain the suppliers ile in ascending supplier name order; likewise, if we process it in sequence by entries in the CITY

column, we obtain the ile in ascending city name order. In other words, the Record Reconstruction Table and the

corresponding Field Values Table together represent all of these orderings simultaneously—without (to repeat) any need

for either indexes or run-time sorting. his fact constitutes one of the major beneits of the TR approach.

By the way, this is as good a point as any to mention that the reconstruction algorithm is known informally as the zigzag

algorithm (and the individual pointer rings are known as zigzags), for obvious reasons.

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Go Faster!

71

Core Concepts

And by the way again: Notice that, to be precise, we can’t sensibly talk about the Record Reconstruction Table that

corresponds to a given Field Values Table; rather, we have to talk in terms of the Record Reconstruction Table that

corresponds to a given ile (and therefore, in a sense, to the unique Field Values Table that corresponds to that ile as

well). he reason is that—obviously enough—several logically distinct iles can all have the same Field Values Table, and

such iles will clearly need diferent Record Reconstruction Tables in order to support the corresponding reconstruction

process properly. For example, this state of afairs would obtain if we had a suppliers ile that was identical to the one

shown in Fig. 4.1 except that supplier S1 was named Jones and supplier S2 was named Smith.

Equality Restrictions

Now let’s take a look at an SQL query involving a simple equality restriction:

SELECT S.S#, S.SNAME, S.STATUS, S.CITY

FROM S

WHERE S.CITY = ‘London’ ;

Since the CITY column (like every column) of the Field Values Table is kept in sorted order, a binary search—or simple

variant thereof—can be used to ind the cells containing London. Given the Field Values Table of Fig. 4.2, those cells turn

out to be [2,4] and [3,4]. Zigzags can now be constructed by following the pointer rings running through cells [2,4] and

[3,4] of the Record Reconstruction Table. In the example, those zigzags look like this:

[2,4], [4,1], [3,2], [2,3]

and

[3,4], [1,1], [5,2], [3,3]

Superimposing these zigzags on the Field Values Table, we obtain the ield values for the desired records:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

72

Core Concepts

Other User-Level Operations

It should be clear that the Field Values Table and the Record Reconstruction Table together ofer direct support for many

other user-level operations too, in addition to simple ORDER BY and equality restriction operations. In fact, most if not

all of the fundamental relational operations—restrict, project, join, summarize, and others (not to mention the operation

of duplicate elimination, which is needed internally, even in true relational systems)—have implementation algorithms

that rely on the ability to access the data in some speciic sequence. By way of example, consider join. We saw in Chapter

2 that sort/merge is a good way to implement join. Well, TR lets us do a sort/merge join without having to do the sort!—

or, at least, without having to do the run-time sort (the sort’s done when the Field Values and Record Reconstruction

Tables are built, which is to say at load time, loosely speaking). Suppose, for example, that the database involves a parts

relation as well as the suppliers relation, and suppose both relations have a CITY attribute. In order to join suppliers and

parts over city names, then, we simply have to access each of the two Field Values Tables in city name sequence and do

a merge-style join.

One important implication of all of the above is that life becomes much easier for the system optimizer; to be more speciic,

the access path selection process (see Chapter 2) becomes much simpler—even completely unnecessary, in some cases.

Another implication is that many of the auxiliary structures found in traditional DBMSs become unnecessary too (though

it might be a good idea to use hashing on either the Field Values Table or the Record Reconstruction Table or both, if

those tables get very large3). Yet another implication is that physical database design becomes much easier, involving as

it does far fewer options and choices, and the same is true for performance tuning.

For further discussion of the use of TR structures in implementing the relational operators, see Chapter 10. Meanwhile,

I’ll close this section with a nice analogy that might help you understand and remember how the Field Values and Record

Reconstruction Tables it into the overall scheme of things:

•	 he Field Values Table is like a parts list that’s used in some manufacturing process.

•	 he Record Reconstruction Table is like instructions for assembling parts—that is, instructions for using that

parts list to manufacture inished products.

Incidentally, it should be clear from this analogy that the “assembly” process is bound to have some associated costs,

especially in a disk-based environment, and we clearly want to keep those costs to a minimum. I’ll address this issue in

subsequent chapters.

4.5 Building the Record Reconstruction Table

I’ve now shown in outline what the Record Reconstruction Table looks like and how it’s used, but I haven’t shown how

it’s built in the irst place. Now it’s time to take a look at this latter question. Please note, however, that I’ll be revisiting

this topic at several points in later chapters (as well as in the inal section of the present chapter); all I want to do for the

moment is consider the simple case. Once again I’ll base my discussions and explanations on the suppliers ile shown in

Fig. 4.1, together with the corresponding Field Values Table shown in Fig. 4.2 and repeated in Fig. 4.3.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

73

Core Concepts

Note irst that the Record Reconstruction Table is built directly from the ile (the Field Values Table plays no part in the

process at all). We begin by considering the efect of applying various sort orderings to that ile. For example, if we sort

the ile by ascending supplier number, we get the records in the sequence 4, 3, 5, 1, 2. I’ll call this sequence the record

permutation corresponding to the ordering “ascending S#” (the S# permutation for short). Other permutations are as

follows:

•	 Ascending SNAME: 2, 5, 1, 3, 4

•	 Ascending STATUS: 3, 1, 4, 2, 5

•	 Ascending CITY: 2, 1, 4, 3, 5

We can summarize these permutations by means of the following Permutation Table:

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Go Faster!

74

Core Concepts

Note: It follows from the way we built it that, in this table, cell [i,j] contains the record number within the suppliers ile of

the record that appears in the ith position when that ile is sorted by ascending values of the jth ield. (You might want to

read that sentence again.) For example, cell [3,2] contains the value 1; if the original ile is sorted by ascending SNAME

value—SNAME being the second ield—the record that appears in the third position is indeed record number 1 (since

that record contains the third lowest SNAME value, Clark).

Now, the foregoing Permutation Table is not the desired Record Reconstruction Table, but it could certainly be used to

perform the function of that table (that is, it could be used to reconstruct records of the original ile), as follows. Suppose

we want to reconstruct the fourth record of that ile. Noting that the value 4 appears in the irst position in column 1,

the ith position in column 2, the third position in column 3, and the third position again in column 4, we can go to the

Field Values Table and pick out the supplier number in cell [1,1], the supplier name in cell [5,2], the status value in cell

[3,3], and the city name in cell [3,4], to obtain the record (once again)

In other words, the sequence of Permutation Table cells

[1,1], [5,2], [3,3], [3,4]

indicates that record number 4 appears irst in the S# permutation (“ORDER BY S#”), ith in the SNAME permutation

(“ORDER BY SNAME”), third in the STATUS permutation (“ORDER BY STATUS”), and third again in the CITY

permutation (“ORDER BY CITY”). And if that sequence of Permutation Table cells seems familiar, then so it should—it’s

exactly the sequence of cells we passed through (albeit in the Field Values and Record Reconstruction Tables, not the

Permutation Table) when we were reconstructing record number 4 in the previous section (Section 4.4).

Now, the trouble with the foregoing algorithm—the algorithm, that is, for reconstructing records from the Permutation

Table—is that the record numbers are efectively stored in each column of that table in random order. As a consequence, a

sequential search is needed to ind the desired record number (4, in the example) in each column. However, we can overcome

this diiculty by using the Record Reconstruction Table in place of the Permutation Table. he Record Reconstruction

Table difers from the Permutation Table in the following important respect:

Where the Permutation Table has a sequence of cells (one cell per column) that each contain some particular

record number, the Record Reconstruction Table has a sequence of cells (corresponding to the record with that

record number) that each contain a pointer to the next cell in that sequence.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

75

Core Concepts

(As we know, the pointers in question are row numbers, and those row numbers identify both rows in the Record

Reconstruction Table itself and rows in the corresponding Field Values Table.) hus, for example, considering only record

number 4, the Permutation Table looks like this:

By contrast, the Record Reconstruction Table looks like this (I’ve shown the pointer ring or zigzag explicitly for the sake

of the example)—

—as indeed we already know from the previous section. And of course it’s much faster to follow a ring of pointers than

to do a series of sequential searches.

Incidentally, note that the zigzag just shown in the Record Reconstruction Table—unlike its counterpart in the Permutation

Table—includes no information as to which particular record in the suppliers ile it corresponds to; all we know is that the

cells linked together in that zigzag do all correspond to the same record in that ile. But no information has really been

lost, because the original record orderings (and hence record numberings) were arbitrary anyway. In other words, if there

are M records altogether, we can in principle generate M! (“factorial M” = M * (M‑1) * (M-2) * ... * 3 * 2 * 1) diferent

versions of the original ile from the same Record Reconstruction Table. Of course, those versions are all information-

equivalent, as explained in Chapter 3.

(In contrast to the foregoing paragraph, the Record Reconstruction Table does still include information regarding the

let-to-right ield ordering of the corresponding ile, inasmuch as its let-to-right column ordering is exactly that ordering.

However, this fact, although it does have some bearing on certain internal operations, is irrelevant to the user at the

relational level.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

76

Core Concepts

Here then is the algorithm for building the Record Reconstruction Table from the Permutation Table:

Step 1: Let PT be the Permutation Table. Build a table RRT with the same number of rows and columns as PT

and with all cells empty.

Step 2: For all records in the user ile, do Step 3.

Step 3: For all columns of PT, do Step 4.

Step 4: Let the current record of the user ile be the rth record, and let the current column of PT be the jth

column. Let cell [i,j] of PT be that cell of column j that contains the record number r. At cell [i,j] of RRT, place

the value i' where cell [i',j+1] of PT is that cell of column j+1 that contains the record number r. If column j is

the last column, take column j+1 as the irst column.

Ater this algorithm has been executed, RRT is the desired Record Reconstruction Table.

As an exercise (Exercise 2), you might like to check that the foregoing algorithm, when applied to the Permutation Table

shown earlier in this section together with the suppliers ile of Fig. 4.1, does indeed yield the Record Reconstruction Table

shown in Fig. 4.3. You might also like to check—this is Exercise 3—that the Record Reconstruction Table shown in Fig. 3.5

in the previous chapter is correct for the ile shown in Fig. 3.2 (and the Field Values Table shown in Fig. 3.4). By the way,

did you notice that the Record Reconstruction Tables shown in Figs. 3.5 and 4.3 are diferent? Why do you think that is?

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Go Faster!

77

Core Concepts

4.6 The Record Reconstruction Table is not Unique

Well, you probably answered the question at the end of the previous section easily enough: he Record Reconstruction

Tables of Figs. 3.5 and 4.3 are diferent because the Permutation Tables from which they were built are diferent. And

the reason the Permutation Tables are diferent is because they in turn were built from diferent versions of the original

suppliers ile, with diferent record orderings. Of course, the diferences in question aren’t very important, in a sense,

because every possible record ordering in the original ile can in principle be reconstructed from either of the two Record

Reconstruction Tables.

However, there’s another reason (a more important reason) why the Record Reconstruction Table is, in general, not

unique. Indeed, we can obtain diferent Record Reconstruction Tables even without starting from diferent versions of

the ile, as I’ll now demonstrate.

First of all, consider the Permutation Table from the previous section once again:

For deiniteness, let’s focus on the STATUS permutation, which, if you’ll glance back at the beginning of the previous

section, you’ll see is 3, 1, 4, 2, 5 (as indeed you can also see from column 3 of the Permutation Table itself). As you’ll recall,

the meaning of that permutation is that if we sort the suppliers ile of Fig. 4.1 by ascending status value, the records of that

ile will appear in the indicated sequence 3, 1, 4, 2, 5. However, I wasn’t being entirely honest with you when I discussed

these ideas previously. Since records 1 and 4 (for suppliers S4 and S1, respectively) both contain the status value 20, and

records 2 and 5 (for suppliers S5 and S3, respectively) both contain the status value 30, the STATUS permutation is not

unique. In fact, there are four possible STATUS permutations that are all equally valid (and all equivalent, in a sense):

•	 3, 1, 4, 2, 5

•	 3, 4, 1, 2, 5

•	 3, 1, 4, 5, 2

•	 3, 4, 1, 5, 2

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

78

Core Concepts

Analogous remarks apply to the CITY permutation, though not to the S# permutation (nor to the SNAME permutation,

as it happens, in this particular example).

It follows from the foregoing that the Permutation Table is not unique, and hence that the Record Reconstruction Table

is not unique either. For example, here’s another valid Permutation Table corresponding to the ile of Fig. 4.1:

And here’s the corresponding Record Reconstruction Table:

Let’s just conirm that this Record Reconstruction Table can indeed be used to reconstruct the records of the original ile

of Fig. 4.1. Let’s start (arbitrarily) at cell [4,1]. hen:

•	 Cell [4,1] of the Field Values Table contains the supplier number S4; cell [4,1] of the Record Reconstruction

Table contains 3, so next we go to cell [3,2].

•	 Cell [3,2] of the Field Values Table contains the supplier name Clark; cell [3,2] of the Record Reconstruction

Table contains 3 again, so next we go to cell [3,3].

•	 Cell [3,3] of the Field Values Table contains the status value 20; cell [3,3] of the Record Reconstruction Table

contains 2, so next we go to cell [2,4].

•	 Cell [2,4] of the Field Values Table contains the city name London; cell [2,4] of the Record Reconstruction

Table contains 4, and we’re back where we started, having reconstructed the supplier record:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

79

Core Concepts

he fact that the Record Reconstruction Table is, in general, nonunique in the foregoing sense will turn out to be very

important in Chapter 7. Note, however, that although the Record Reconstruction Table is indeed nonunique as we’ve just

seen, in what follows I’ll continue to talk in terms of “the” Record Reconstruction Table much of the time, just to keep

things simple.

Endnotes

1. I’ve split the material across two chapters simply because there’s such a lot of ground to cover—I didn’t want

you to have to deal with one great big monolithic and indigestible chapter, especially at this point in the

book, and especially when the topics involved are so fundamental.

2. he reference is to Exercise 1 in Appendix A. I’ll follow this numbering style for exercises throughout the

rest of the book. (By the way, this is as good a place as any to remind you that Appendix A doesn’t just

contain the exercises as originally stated—it also includes much of the necessary background material. In

the case of Exercise 1, for example, it includes a repeat of the Field Values Table and Record Reconstruction

Table from Fig. 4.3 and a repeat of the pointer rings from Fig. 4.4.)

3. he hash in question would have to be indirect, however [48,60]—it couldn’t be a simple “direct” hash as

described in Chapter 2, because of the inherently ordered nature of both the Field Values Table and the

Record Reconstruction Table. But we can have as many hashes as we like, so long as they are indirect; in the

very unlikely extreme, we could even have a hash on every column of each of the two tables. Note, however,

that the performance improvements that hashing might provide are likely to be small in comparison to the

fundamental improvements that the TR structures ofer in the irst place.

http://bookboon.com/

